
Abstract. A method of solvation energy computation is
proposed for ions and molecules in the environment of
an ionic melt, based on the approximation of the ionic
melt as an ideal conductor. The method is used to
compute equilibrium constants of some equilibria in
cryolite melt. Theoretically obtained results predict that
aluminium is bound in tetra¯uorocomplexes AlFÿ4 .
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1 Introduction

The importance of cryolite in aluminium production
motivates the many scienti®c studies of cryolite melt
structure and energetics.

Most of the experimental data concerning the step-
wise dissociation of hexa¯uoroaluminate ion is from
electrochemical measurements and Raman spectra. The
results of recent high temperature in situ Raman spec-
troscopy studies are usually interpreted by the dissocia-
tion schemes proposed by Gilbert, AlF3ÿ

6 ! AlF2ÿ
5 �

Fÿ ! AlFÿ4 � 2Fÿ, with a relatively high concentration
of AlF2ÿ

5 ion [1,2]. This conclusion is based on the
decomposition of measured bands in the region of
totally symmetric valence vibrations of the AlF3ÿ

6 anion
into components arising from supposed species present
in the melt. However, the way of decomposition of
vibration spectra is a critical point of the interpretation
of the experimental data in this case [3]. For this reason a
theoretical study is called for.

Among the theoretical methods used for the study of
this problem are the Monte Carlo (MC) simulations of
Qiu and Xie [4] and the molecular dynamics (MD) cal-
culations of LisÏ ka et al. [5]. However, none of the MD
and MC simulated melt structures con®rm Gilbert's
dissociation scheme. Unlike MC, the MD result agrees
well with basic features of the equilibrium crystal
structure of cryolite (six-fold Al coordination, Al-F
distance).

The reasons for some failures of MC and MD are
traditionally attributed to the pairwise form of the total
potential and its particular parametrisation. However, a
deeper analysis of whether the discrepancies between
theoretical and experimental results are failures of the
MC and MD schemes or whether these discrepancies are
consequences of insu�ciently careful interpretation is
still lacking.

As far as quantum-chemical calculations are con-
cerned, it is well known that to obtain calculated ener-
gies with so-called ``chemical'' accuracy methods of post
Hartree-Fock (HF) level combined with relatively large
basis sets are needed. The recent paper of Bock et al. [6]
is such a post-HF study of halogeno-aluminate systems.
In their work, the molecules and ions, approximated to
be in an ideal gas phase, served as model clusters. The
in¯uence of the molten salt environment was simulated
by the presence of some alkali atoms in the model
clusters.

Bouyer et al. [7] studied ¯uoro- and chloro-aluminate
anions using density functional theory. They computed
vibrational frequencies in the ideal gas phase and com-
pared the relative stabilities of individual complexes.

Having reviewed the state of the art in the topic of
quantum-chemical calculations on molten salt systems,
we suggest the following strategy for this work:

± Use of a quantum-chemical method providing results
of post-HF accuracy;

± Choice of a proper set of quasi-species (by this term
we will mean either real or hypothetical molecules or
ions representing the cryolite melt) using unambigu-
ous criteria of their suitability;
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± Inclusion of the solvation e�ect of the liquid envi-
ronment. This is important especially for ionic melts.
In this case, the interaction energy between charged
quasi-species is often greater than the reaction ener-
gies of mutual transformations of quasi-species (or, at
least, of comparable magnitude). This leads to
qualitatively di�erent reaction schemes than would
be expected without inclusion of this e�ect. The e�ect
of solvation of the ion by the melt is greater by several
orders of magnitude than the e�ect of vibrational
motion of atoms in quasi-species (zero-point correc-
tion, entropy derived from the vibration). This is why
one cannot expect too much success from a simple
ideal-gas scheme. The use of a more sophisticated
statistical-thermodynamics method is absolutely nec-
essary in this case.

2 Method

A quantum-chemical method based on density functional theory
(DFT) and implemented in the computer codes deMon [8] and
Gaussian'94 [9] was used to calculate electronic structure and total
energies of the model quasi-species. This well-established method
ful®ls the requirement of obtaining energies of chemical accuracy
and, in comparison with HF and the post-HF methods, its com-
putational complexity is at least one order lower. A TZP basis set
for all atoms and a Perdew and Wang (PW91) exchange-correlation
functional [10] was used.

The existence of su�ciently deep minima on the energy hyper-
surface is used as the criterion for stability of individual quasi-
species. To consider the quasi-species as being stable, the lowest
energy barrier of transformation to another quasi-species must be,
for a given temperature T, at least one order of magnitude higher
than kT (k is Boltzmann's constant)

In addition, electronic stability has to be taken into account.
When the absolute value of the di�erence between the energy of the
highest occupied molecular orbital (HOMO) and the energy of
solvated unit charge is too high, the quasi-species tends to stabilise
by lowering the absolute value of its charge. In the case of an elec-
tronically conducting environment this would be achieved by loss or
acceptance of an electron. Our case is di�erent; the ionic melts have
ionic conductivity and the stabilisation of a complex ion of a quasi-
species is achieved by loss or acceptance of a cation or anion,
changing in turn the chemical quality of the respective quasi-species.

The high electrical conductivity of ionic melts allows one to
estimate the solvation Gibbs energy of individual quasi-species by
using a continuum model of an ideal conductor. A quasi-chemical
approximation is used to describe equilibria between individual
particles, that is, the quasi-species, in the ionic melt:X

j

ljmj �
X

i

lici �V ; T ;Na� �1�

where lj; li are the chemical potentials of the respective quasi-
species, mj; ci are the corresponding stoichiometric coe�cients and
�V ; T ;Na� indicates an ensemble at constant volume, temperature
and total number of atoms. The equilibrium constant K can be
obtained if the chemical potentials lk�N1;N2; . . . ;Nk ; . . . ;NM ; V ; T �
are known (N1;N2; . . . ;Nk ; . . . are the numbers of particles of the 1-
st, 2-nd; . . . ; k-th type, and M is the number of various types of
quasi-species, respectively). The chemical potential of the k-th
quasi-species is de®ned as

lk � F �N1; . . . ;Nk � 1; . . . ;NM ; V ; T �
ÿ F �N1; . . . ;Nk ; . . . ;NM ; V ; T � �2�

where the Helmholtz free energy F is de®ned as:

F �N1; . . . ;NM ; V ; T � � ÿkT ln Z�N1; . . . ;NM ; V ; T � �3�
and

Z�N1; . . . ;NM ; V ; T � �
YM
j�1

KNj
j �T �
Nj!

�
Z

exp ÿU�N1; . . . ;NM �
kT

� �Y
i

dCi �4�

where Kj is the electron, intramolecular and translational part of
the statistical sum for the j-th particle,

Q
i dCi is the volume element

of the con®gurational space of the entire ensemble and
U�N1; . . . ;NM � is the total potential energy of the ensemble con-
sisting of N1; . . . ;NM particles of the 1-st; . . . ;M-th species:

U�N1; . . . ;NM � � 1

2

XM
i�1

XM
j�1

XNj

aj�1

XNi

bi�1

V �aj;bi� �5�

where V �aj;bi� is the potential energy of the interaction between
the a-th particle of the type j with the b-th particle of the type i.
Now, the statistical sum Z�N1; . . . ;Nk � 1; . . . ;NM � for Nk � 1 par-
ticles of the k-th species will be expressed using the statistical sum
Z�N1; . . . ;Nk ; . . . ;NM � for Nk particles of the k-th type:

Z�. . . ;Nk � 1; . . .� �
YM
i�1

KNi
i �T �
Ni!

� Kk

Nk � 1
�Z

exp�ÿU�. . . ;Nk � 1; . . .�=kT �
Y

dCi �6�

The con®guration integral can be written in the formZ
exp�ÿU�. . . ;Nk � 1; . . .�=kT �

Y
i

dCi

�
Z "Z

exp ÿU�. . . ;Nk ; . . .�
kT

� �
� exp ÿ

P
bi

V �aNk�1; bi�
kT

� �

�
YM
i�1

YNi

bi�1
dCbi

#
dCNk�1 �

Z
exp ÿU�. . . ;Nk ; . . .�

kT

� �YNk

a

dCa

�
R R

exp ÿ U�...;Nk ;...�
kT

h i
� exp ÿ

P
bi

V �aNk�1 ;bi�
kT

� �QM
i�1
QNi

bi�1 dCbi

� �
dCNk�1R

exp ÿ U�Nk�
kT

h iQNk
a dCa

�7�
Then one hasZ

exp ÿU�. . . ;Nk � 1; . . .�
kT

� � Y
i

dCi

�
Z

exp ÿU�. . . ;Nk ; . . .�
kT

� �YNk

a

dCa � V

�
*
exp ÿ

PM
i

PNi
bi�1 V �aNk�1;bi�

kT

" #+
�8�

where hAi is the thermodynamic mean value of an arbitrary
quantity A. Finally,

Z�. . . ;Nk � 1; . . .� � Z�. . . ;Nk ; . . .� Kk�T � V
Nk � 1

�
*
exp ÿ

PM
i

PNi
bi�1 V �aNk�1; bi�

kT

" #+
�9�

Then, for the chemical potential lk one has

lk � kT ln
ck

Kk�T � ÿ kT ln

�
*
exp ÿ

PM
i

PNi
bi�1 V �aNk�1; bi�

kT

" #+
�10�

or
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lk � lk;o � lk;solv �11�
where ck � Nk=V is the concentration of the species of k-th type,
lk;o is the chemical potential of the species of k-th type in the ideal
gas phase and lk;solv is the solvation contribution to the chemical
potential and is equal to the isothermal work needed for transfer of
the particle from the melt to the vacuum.

In the case of an electrical charge or multipole, this work is
equal to the di�erence of electrostatic energies of a particle in the
melt and in the vacuum. In our model we approximate of the melt
by a continuum which behaves as an ideal conductor. The solvated
particle is considered to be in a cavity surrounded by the contin-
uous environment. In the ideal conductor approximation the only
assumption is that the electric ®eld generated by the solvated ion or
multipole is completely screened in the o�-cavity space. The radius
of the cavity Rk is computed as

Rk � supfRk;ignk
i�1 �12�

where nk is the number of atoms in the quasi-species of the k-th
type, i runs over all the atoms of the k-th type quasi-species and

Rk;i � j~rk;i ÿ~rk;o j � qi �13�
where j~rk;i ÿ~rk;o j is the distance of the i-th atom from the centre of
mass of the considered quasi-species (~rk;i and~rk;o being the radius
vectors of the i-th atom and the centre of mass, respectively) and qi
is the ionic radius of the i-th atom of the quasi-species. The iso-
thermal work needed for transfer of the solvated particle from the
cavity in the ideal conductor to the vacuum is then

lk;solv �
1

8p

Z
~Dk �~Ek dV

ÿ 1

8p

Z
~Eo;k �~Eo;k dV �14�

where ~Dk , ~Ek and ~Eo;k are the dielectric displacement of the k-th
particle, the vector of electric ®eld generated by the k-th particle
and the vector of electric ®eld of the k-th particle in the vacuum,
respectively.

In the case of ions one obtains [11]

lk;solv � ÿ
Q2

k

2Rk
�15�

where Qk is the charge of the ion and Rk is the radius of the cavity.
In the case of a dipole we have [11]

lk;solv � ÿ
d2k
2R3

k

�16�

where dk is the absolute value of the dipole moment of the quasi-
species of the k-th type.

The relation describing the equilibrium between individual
quasi-species in the melt can be then rewritten in the formX

j

mj

�
kT ln

cj

Kj
� lj;solv

�
�
X

i

ci

�
kT ln

ci

Ki
� li;solv

�
�17�

The equlibrium constant for the reaction scheme considered is then

K�T ; V � �
Q

j cmj
jQ

i cci
i
�
Q

j Kmj
jQ

i K
ci
i

� exp

P
i cili;solv ÿ

P
j mjlj;solv

kT

� �
�18�

In our calculations we assumed that the ratio of vibrational and
rotational statistical sums for the individual reactions would be
close to unity (or, in other words, that the energy di�erences of
these motions are several orders less than changes in the electronic
and solvation energies). Thus, only electronic and translational
degrees of freedom are included in Kj;Ki in Eq. (18).

In accordance with widely accepted opinion and the results of
spectroscopic studies [1, 2] only quasi-species with at most one
aluminium atom were considered in the present work. Based on

elementary chemical considerations, the preliminary set of quasi-
species subjected to stability testing was restricted to Na�, Fÿ, and
NaxAlF

�3�xÿy�
y , where x ranges from 0 to 6 and y ranges from 4 to 6.

Note that for some of the summary formulae of the above type, one
obtains more than one chemically non-equivalent quasi-species. In
this case we considered the most energetically stable molecule or
ion (e.g. tridentate NaAlF4).

Of all the possible quasi-species in the cryolite melt, the subset
of most probable quasi-species with at most one Al atom is shown
in Table 1. Among these, the quasi-species with lower absolute
value of electric charge are expected to be the most stable in an
ionic environment. (Destabilisation due to high charge signi®cantly
dominates the e�ect of stabilisation by solvation.) This assumption
was veri®ed by computation of some highly charged quasi-species,
e.g., AlF3ÿ

6 . Thus, following the above electron stability criterion a
subset of most stable quasi-species was selected from scheme I.
Those quasi-species for which calculations were performed are in-
dicated in bold type in Table 1. For each of these quasi-species gas-
phase geometry optimization was performed. These geometries
were then used for further computations. The values of 0.95 AÊ and
1.33 AÊ were used for the ionic radii of Na� and Fÿ, respectively, in
accordance with standard textbooks of inorganic chemistry.

3 Results

3.1 Structure

Computations at a similar level of theory have been
reported for some of our quasi-species. The optimised
geometry of the quasi-species given by our calculations is
in good agreement with the gas-phase geometry of the
same ions, computed by other authors. Our Al-F bond
length for the octahedral anion AlF3ÿ

6 is 1.900 AÊ , which
is in excellent agreement with the value obtained using

LDF [7]. The Al-F bond lengths in AlF2ÿ
5 are

1.767 AÊ for equatorial and 1.815 AÊ for the axial bonds,
in good agreement with the values of 1.78 AÊ and
1.81 AÊ [7]. We also calculated equilibrium geometries
of selected models using other quantum-chemical meth-
ods (B3LYP, HF/MBPT2) [9]. (All aspects of these
calculations will be discussed in details in a forthcoming
publication). For AlF2ÿ

5 with a ``hybrid'' HF-DFT
exchange-correlation functional B3LYP [12] we ob-
tained bond lengths of 1.780 AÊ for equatorial and
1.830 AÊ for axial bonds in AlF2ÿ

5 , respectively. The
B3LYP functional provides larger bond lengths than the
Perdew-Wang one, as is usually the case. The type of
exchange-correlation functional used in [7] was not
indicated there.

Table 1. Subset of quasi-species in a cryolite melt with at most one
Al atom (bold type indicates species for which calculations were
performed)

Na+ NaF F)

Na6AlF
5�
4 Na6AlF

4�
5 Na6AlF

3�
6

Na5AlF
4�
4 Na5AlF

3�
5 Na5AlF

2�
6

Na4AlF
3�
4 Na4AlF

2�
5 Na4AlF

�
6

Na3AlF
2�
4 Na3AlF

�
5 Na3AlF6

Na2AlF
�
4 Na2AlF5 Na2AlF

ÿ
6

NaAlF4 NaAlFÿ5 NaAlF2ÿ
6

AlFÿ4 AlF2ÿ5 AlF3ÿ6
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For AlFÿ4 and NaAlF4 we can compare our results
with results of the HF 6-31G* geometry optimisation [6].
Our Al-F bond length in AlFÿ4 is 1.668 AÊ , the HF 6-
31G* result in [6] is 1.677 AÊ . The interatomic distances
in NaAlF4 with tridentate position of Na provided by
our computation versus those referred to in [6] are 2.533
vs 2.583 AÊ for Na-Al and 1.710 vs 1.634 AÊ for Al-F
(closer to Na), respectively. The di�erences can be as-
cribed to the fact that the geometries in [6] were obtained
at the HF level of theory.

3.2 Energetics and equilibrium constants

Table 2 summarises the total SCF energies, solvation
energies, total energies in the environment of the ionic
melt and the radii of cavities for all the quasi-species
considered.

Table 3 shows the most important reaction schemes of
the type C!A+B that can be constructed from our set
of quasi-species together with the values of the respective
equilibrium constants at 1000 K. The e�ect of stabilisa-
tion of the charged particles in the melt can be seen in the
di�erence between the equilibrium constants for the gas

Table 2. Calculated energies
[SCF (DFT/pw91) solvation,
total, in a.u.] and radii of
cavities (in AÊ ) of quasi-species
in the ionic melt

Quasi-species E(SCF) E(SOLV) E(TOTAL) R(CAV)

Na+ )162.0340 )0.2786 )162.3126 0.950
F) )99.8470 )0.1990 )100.0460 1.330
NaF )262.1428 )0.0732 )262.216 2.089
AlFÿ4 )642.2251 )0.0883 )642.3134 2.998
NaAlF4 )804.4488 )0.0051 )804.4538 3.770
Na2AlF

�
4 )966.5390 )0.0569 )966.5959 4.649

Na4AlF
3�
4 )1290.4643 )0.4992 )1290.9635 4.770

AlF2ÿ
5 )741.9992 )0.3366 )742.3358 3.144

NaAlFÿ5 )904.3952 )0.0764 )904.4716 3.463
Na2AlF5 )1066.6198 )0.0034 )1066.6232 4.575

Na5AlF
3�
5 )1552.5711 )0.5042 )1553.0753 4.723

AlF3ÿ
6 )841.6336 )0.7372 )843.1862 3.230

NaAlF2ÿ
6 )1004.1751 )0.2969 )1004.472 3.565

Na2AlF
ÿ
6 )1166.5883 )0.0758 )1166.6641 3.492

Na3AlF6 )1328.8706 )0.0140 )1328.8846 3.376

Na4AlF
�
6 )1491.0611 )0.0736 )1491.1341 3.596

Na6AlF
3�
6 )1814.8999 )0.5034 )1815.4033 4.731

Table 3. Equilibrium constants
in the melt and without
accounting for the solvent
e�ect at 1000 K (in mol/l)

No. Reaction K(melt) K(gas)

1 NaF!Na++F) 3.7 ´ 1032 1.3 ´ 10)23

2 NaAlF4 ! Na� �AlFÿ4 9.8 ´ 1036 2.4 ´ 10)13

3 Na2AlF
�
4 ! Na� �NaAlF4 6.5 ´ 1036 5.2 ´ 105

4 AlF2ÿ
5 ! Fÿ �AlFÿ4 3.5 ´ 1016 2.0 ´ 1023

5 NaAlFÿ5 ! Na� �AlF2ÿ
5 4.5 ´ 1037 5.8 ´ 10)37

6 NaAlFÿ5 ! Fÿ �NaAlF4 1.6 ´ 1017 4.9 ´ 10)1

7 NaAlFÿ5 ! NaF�AlFÿ4 4.2 ´ 1021 9.1 ´ 109

8 Na2AlF5 ! Na� �NaAlFÿ5 3.2 ´ 1035 2.0 ´ 10)13

9 Na2AlF5 ! Fÿ �Na2AlF
�
4 7.9 ´ 1015 1.9 ´ 10)19

10 Na2AlF5 ! NaF�NaAlF4 1.4 ´ 1020 7.5 ´ 109

11 Na5AlF
3�
5 ! NaF�Na4AlF

3�
4 1.2 ´ 1028 5.4 ´ 1018

12 AlF3ÿ
6 ! 2Fÿ �AlFÿ4 2.3 ´ 1031 6.0 ´ 1065

13 AlF3ÿ
6 ! Fÿ �AlF2ÿ

5 6.5 ´ 1014 3.0 ´ 1042

14 NaAlF2ÿ
6 ! Na� �AlF3ÿ

6 2.7 ´ 1042 6.8 ´ 10)57

15 NaAlF2ÿ
6 ! 2Fÿ �NaAlF4 6.2 ´ 1036 1.7 ´ 1022

16 NaAlF2ÿ
6 ! Fÿ �NaAlFÿ5 3.9 ´ 1019 3.4 ´ 1022

17 NaAlF2ÿ
6 ! NaF�AlF2ÿ

5 4.7 ´ 1024 1.5 ´ 109

18 Na2AlF
ÿ
6 ! Na� �NaAlF2ÿ

6 9.2 ´ 1029 2.7 ´ 10)39

19 Na2AlF
ÿ
6 ! 2Fÿ �Na2AlF

�
4 8.8 ´ 1029 9.0 ´ 10)23

20 Na2AlF
ÿ
6 ! Fÿ �Na2AlF5 1.1 ´ 1014 4.8 ´ 10)4

21 Na2AlF
ÿ
6 ! 2NaF�AlFÿ4 4.1 ´ 1038 6.6 ´ 1016

22 Na2AlF
ÿ
6 ! NaF�NaAlFÿ5 9.6 ´ 1016 7.2 ´ 106

23 Na3AlF6 ! Na� �NaAlFÿ6 1.2 ´ 1026 2.5 ´ 10)21

24 Na3AlF6 ! 2NaF�NaAlF4 4.8 ´ 1027 6.9 ´ 108

25 Na3AlF6 ! NaF�Na2AlF5 3.5 ´ 107 9.2 ´ 10)2

26 Na4AlF
�
6 ! Na� �Na3AlF6 1.1 ´ 1022 1.0 ´ 10)8

27 Na4AlF
�
6 ! 2Fÿ �Na4AlF

3�
4 6.9 ´ 1015 1.0 ´ 10)90

28 Na6AlF
3�
6 ! NaF�Na5AlF

3�
5 2.9 ´ 10)2 2.0 ´ 10)12
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phase and for the melt. The energetical preference for
small cavities (Table 2) is also evident in the values of the
equlibrium constants (Table 3). Looking at the equilib-
rium constants in the melt, one can see from the values
for reactions 4 and 13 (Table 3) that the equlibrium is
strongly shifted to the AlFÿ4 anion (note that the equi-
librium constant for reaction 12 is simply a product of the
above equilibrium constants). This is, however, a simple
example, although quite illustrative. To take into account
all the reactions considered and various possible molar
ratio NaF/AlF3, one has to express the Gibbs energy
of the reaction mixture (using the known chemical po-
tentials) as a function of concentrations of individual
quasi-species. The vector of concentrations of individual
quasi-species, giving the minimum Gibbs energy, is then
computed under the condition of conservation of stoi-
chiometry and material balance. (The usual methods of
linear programming can be used for such a minimisat-
ion.) Our calculations of equilibrium compositions of
reaction mixtures were performed for a ratio of NaF/
AlF3 ranging from 1 (corresponding to NaAlF4) to 3
(corresponding to Na3AlF6). These calculations showed
that almost all aluminium atoms are coordinated with
four ¯uorine atoms in AlFÿ4 complex ions.

4 Discussion

The equilibrium constants we obtain predict that all
aluminium ions in the melt are in the form of AlFÿ4 ions,
for practically all common concentration ranges. The
recent experimental study of Tixhon et al. [13] yields the
same result for equilibrium in an NaF-AlF3 system in an
environment of molten NaCl. The Clÿ anion does not
substitute the ¯uoride anion in the coordination sphere
of Al, and the NaCl seems to be a chemically unreactive
environment for ¯uoroaluminate ions. This situation is
very close to the assumptions of our model. Thus one
can conclude that the model of solvation of ions by an
ideal conductor continuum works well for ionic melts.

For pure xNaF-yAlF3 systems, interpretation of ex-
perimental data of the same kind as in [13] does not
show that the major component of the melt is AlFÿ4 [1,
2]. The conclusion of Refs. [1, 2] that the AlF2ÿ

5 ions are
the most signi®cant components of the melt contradicts
our result. Moreover, in Ref. [3] serious arguments
against such conclusion are presented. A possible source
of error in the interpretation of the spectral data may be
the neglect of contributions by dialumino (or oligoalu-
mino) complexes. Our theoretical study carries the same
limitation. Consideration of, at least, dimers will prob-
ably better describe the pure ¯uoride melt.

Another approximation of the present method is that
the in¯uence of the reaction ®eld on the equilibrium
geometry of the molecule or ion is not taken into ac-
count. For reactions in which the reactants have small
energy di�erences the errors caused by this approxima-
tion may be signi®cant. Including this e�ect will improve
mainly the liquid/gas equilibrium constants and will
enable prediction of the equilibrium gas pressure over
the melt.

Two ways of further development of our model
should be investigated. First, the set of model quasi-
species should be extended to include oligo-aluminium
species. This is strongly supported by the results of MD
simulations [5]. The Al-Al partial radial distribution
functions obtained in [5], and the Al-Al coordination
numbers derived from them, indicate the possible exis-
tence of dimers for a melt composition of Na3AlF6,
possible linear chains in the case of Na2AlF5 and a
possible tetrahedral Al-Al network in case of NaAlF4.
One does not necessarily need to believe that there really
exists a chain or a three-dimensional network in the
melt, but the motivation for extending our model for
quasi-species with more than one Al atom is strong.

The second direction is the methodological improve-
ment of the solvation models used for ionic melts.
Among the most promising possibilities one can mention
direct inclusion of the electrical ®eld of the environment
into the Hamiltonian of the quasi-species; construction
of quasi-species which include the second, third, etc.
coordination spheres; and the combination of both.

5 Conclusions

The combination of su�ciently accurate quantum-chem-
ical methods with the correct choice of quasi-species and
with appropriate description of the solvation e�ect
enables a qualitatively correct description of molten salt
structure. It should be emphasised that the choice of the
quasi-species is crucial to the success of this method.

The qualitatively correct results obtained using our
very simple solvation model are encouraging. More ac-
curate predictions (at least at the semiquantitative level)
can be expected after minor improvements of this
model.
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